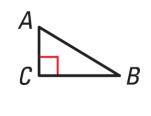

Geometry

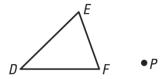
4.3 Perform Rotations

Rotation

- Figure is ______ about a _____ called _____
- The amount of _____ is _____



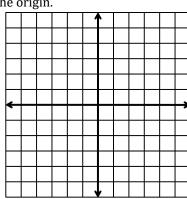
Rotation Theorem

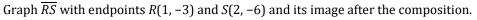

A rotation is a _____

Draw a rotation of $\triangle ABC$ about P.

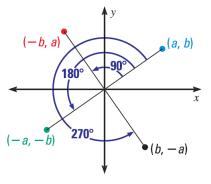
- 1. Draw a segment from *A* to *P*.
- 2. Draw a ray to form a 120° angle with \overline{PA}
- 3. Draw A' so that PA' = PA
- 4. Repeat steps 1-3 for each vertex. Draw $\Delta A'B'C'$.

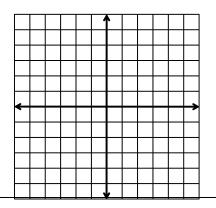
Draw a 50° counterclockwise rotation of ΔDEF about P.



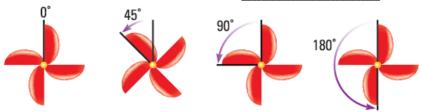

Coordinate Rules for Counterclockwise Rotations about the Origin

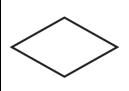
• 180° : $(a, b) \rightarrow _____$


• 270°: $(a, b) \rightarrow$ _____


If E(-3, 2), F(-3, 4), G(1, 4), and H(2, 2). Find the image matrix for a 270° rotation about the origin.

Rotation: 180° about the origin **Reflection:** in the *y*-axis




Rotational Symmetry

• The figure can be _____ to itself by a _____ of ____ or ___ about the ____ of the figure

• The center of rotation is called the _

Does the figure have rotational symmetry? What angles?

Assignment: 188 #2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 40, 42, 43, 46, 47 = 20